Schottky Rectifier, 400 A

FEATURES

- $175^{\circ} \mathrm{C}$ Tر operation
- Center tap module
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead (Pd)-free
- Designed and qualified for industrial level

DESCRIPTION

The NKSD400... Schottky rectifier common cathode module series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to $175{ }^{\circ} \mathrm{C}$ junction temperature. Typical applications are in high current switching power supplies, plating power supplies, UPS systems, converters, freewheeling diodes, welding, and reverse battery protection.

TO-244 (non-insulated)

TO-244 (insulated)

MAJOR RATINGS AND CHARACTERISTICS								VALUES	
SYMBOL	CHARACTERISTICS	400	A						
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	Rectangular waveform	100	V						
$\mathrm{~V}_{\text {RRM }}$		25500	A						
$\mathrm{I}_{\mathrm{FSM}}$	$\mathrm{t}_{\mathrm{p}}=5 \mu \mathrm{~s}$ sine	0.69	V						
$\mathrm{~V}_{\mathrm{F}}$	$200 \mathrm{Apk}, \mathrm{TJ}=125^{\circ} \mathrm{C}$ (per leg $)$	-55 to 175	${ }^{\circ} \mathrm{C}$						
T_{J}	Range								

VOLTAGE RATINGS			
PARAMETER	SYMBOL	NKSD400-100	UNIT
Maximum DC reverse voltage	V_{R}	100	V
Maximum working peak reverse voltage	$\mathrm{V}_{\text {RWM }}$		

Vishay High Power Products

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNIT
Maximum average forward current See fig. 5 $\frac{\text { per leg }}{\text { per device }}$	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	50% duty cycle at $\mathrm{T}_{\mathrm{C}}=141^{\circ} \mathrm{C}$, rectangular waveform		200 400	A
Maximum peak one cycle non-repetitive surge current per leg See fig. 7	$\mathrm{I}_{\text {FSM }}$	$5 \mu \mathrm{~s}$ sine or $3 \mu \mathrm{~s}$ rect. pulse 10 ms sine or 6 ms rect. pulse	Following any rated load condition and with rated $V_{\text {RRM }}$ applied	25500 3300	
Non- repetitive avalanche energy perleg	$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {AS }}=13 \mathrm{~A}, \mathrm{~L}=0.2 \mathrm{mH}$		15	mJ
Repetitive avalanche current per leg	$\mathrm{I}_{\text {AR }}$	Current decaying linearly to zero in $1 \mu \mathrm{~s}$ Frequency limited by T_{J} maximum $V_{A}=1.5 x V_{R}$ typical		1	A

ELECTRICAL SPECIFICATIONS

PARAMETER	SYMBOL		ONS	VALUES	UNIT
Maximum forward voltage drop per leg See fig. 1	$V_{F M}{ }^{(1)}$	200A	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	0.84	V
		400A		1.07	
		200A	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	0.69	
		400A		0.82	
Maximum reverse leakage current per leg See fig. 2	$\mathrm{I}_{\mathrm{RM}}{ }^{(1)}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=$ Rated V_{R}	6	mA
		$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$		80	
Maximum junction capacitance per leg	$\mathrm{C}_{\text {T }}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}_{\mathrm{DC}}$ (test signal range 100 kHz to 1 MHz) $25^{\circ} \mathrm{C}$		5500	pF
Typical series inductance per leg	L_{s}	From top of terminal hole to mounting plane		5	nH
Maximum voltage rate of change	$\mathrm{dV} / \mathrm{dt}$	Rated V_{R}		10000	$\mathrm{V} / \mu \mathrm{s}$
Maximum RMS insulation voltage	$V_{\text {INS }}$	50 Hz		3000 (1min)	V
				3600 (1s)	

Note

(1) Pulse width < 300μ s, duty cycle $<2 \%$

THERMAL-MECHANICAL SPECIFICATIONS

PARAMETER			SYMBOL	MIN.	TYP.	MAX.	UNIT
Maximum junction and storage temperature range			$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {Stg }}$	-55	-	175	${ }^{\circ} \mathrm{C}$
Thermal resistance, junction to case per leg		TO-244 (non-insulated)	$\mathrm{R}_{\text {thJC }}$	-	-	0.19	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		TO-244 (insulated)		-	-	0.26	
Thermal resistance, junction to case per module		TO-244 (non-insulated)	$\mathrm{R}_{\text {thcs }}$	-	-	0.095	
		TO-244 (insulated)		-	-	0.13	
Thermal resistance, case to heatsink				-	0.1	-	
Weight	TO-244 (non-insulated)			-	85 (3)	-	g(oz.)
	TO-244 (insulated)			-	100 (3.53)	-	
Mounting torque				35.4 (4)	-	53.1 (6)	lbf • in ($\mathrm{N} \cdot \mathrm{m}$)
Mounting torque center hole				30 (3.4)	-	40 (4.6)	
Terminal torque				30 (3.4)	-	44.2 (5)	
vertical pull				-	-	80	$\mathrm{lbf} \cdot \mathrm{in}$
2" lever pull				-	-	35	
Case style				JEDEC		TO-244AA compatible	

Ordering Information Tabel

Fig. 1 Maximum forward voltage drop characteristics (Per Leg)

Fig. 2 Typical values of reverse current vs. Reverse voltage (Per Leg)

Fig.3-1 Maximum thermal impedance $\mathbf{R}_{\text {th }(j-c)}$ characteristics (Per Leg, for TO-244 non-insulated)

SEMICONDUCTOR

Fig.3-2 Maximum thermal impedance $R_{\text {th(j-c) }}$ characteristics (Per Leg, for TO-244 insulated)

Fig. 4 Typical junction capacitance vs.
Reverse voltage (Per Leg)

Fig. 6 Forward power loss characteristics (Per Leg)

Average forward current, $\mathrm{I}_{\mathrm{F}(\mathrm{AV})}(\mathrm{A})$

Fig. 5 Maximum allowable case temperature vs. Average forward current (Per Leg)

Average forward current, $\mathrm{I}_{\mathrm{F}(\mathrm{AV})}(\mathrm{A})$

Fig. 7 Maximum non-repetitive surge current (Per Leg)

Square wave pulse duration, $\mathrm{t}_{\mathrm{p}}(\mu \mathrm{s})$

Fig. 8 Unclamped Inductive test circuit

Note
(1) Formula used: $T_{C}=T_{J}-\left(P d+P d_{R E V}\right) \times R_{\text {thJC }}$;
$\mathrm{Pd}=$ Forward power loss $=\mathrm{I}_{\mathrm{F}(\mathrm{AV})} \times \mathrm{V}_{\mathrm{FM}}$ at $\left(\mathrm{I}_{\mathrm{F}(\mathrm{AV})} / \mathrm{D}\right)$ (see fig.6)
$\mathrm{Pd}_{\mathrm{REV}}=$ Inverse power loss $=\mathrm{V}_{\mathrm{R} 1} \times \mathrm{I}_{\mathrm{R}}(1-\mathrm{D})$; I_{R} at $\mathrm{V}_{\mathrm{R} 1}=80 \%$ rated V_{R}

All dimensions in millimeters

Vishay High Power Products

TO-244 (Insulated)

All dimensions in millimeters

